Interpreting Blackbox Models via Model Extraction

Osbert Bastani1,4, Carolyn Kim2, Hamsa Bastani3,4
1Massachusetts Institute of Technology, 2Stanford University, 3IBM Research, 4University of Pennsylvania

\section*{Summary}
\begin{itemize}
 \item **Motivation**
 \begin{itemize}
 \item Despite having high accuracy, blackbox machine learning models lack interpretability.
 \item This is a concern when such models are used for consequential decisions, e.g., medical diagnosis.
 \end{itemize}
 \item **Algorithm**
 \begin{itemize}
 \item We propose interpreting blackbox models by extracting a decision tree that approximates the model.
 \item We avoid overfitting by actively sampling new data points and labeling them using the model.
 \end{itemize}
 \item **Related literature**
 \begin{itemize}
 \item Directly learning interpretable models (Ustun-Rudin 2016)
 \item Interpreting specific test points (Ribeiro et al., 2016)
 \item Computing influence scores for features (Friedman 2001) or training points (Koh-Liang 2017)
 \end{itemize}
\end{itemize}

\section*{Problem Formulation}
\begin{itemize}
 \item **Inputs**
 \begin{itemize}
 \item Blackbox classifier \(f: X \rightarrow \mathcal{Y} \)
 \item Training set \((X, Y) \subseteq \mathcal{X} \times \mathcal{Y} \)
 \item Depth \(D \) of the decision tree to be extracted
 \end{itemize}
 \item **Output**
 \begin{itemize}
 \item An axis-aligned decision tree \(T(X) \approx f(x) \)
 \item Use \(T \) to understand \(f \)
 \end{itemize}
\end{itemize}

\section*{Exact Greedy Decision Tree}
\begin{itemize}
 \item **Estimate input distribution**
 \begin{itemize}
 \item Fit a Gaussian mixture model \(\mathcal{P} \) to \(X \)
 \item Components of \(\mathcal{P} \) are axis-aligned Gaussians
 \end{itemize}
 \item **Iteratively construct tree**
 \begin{itemize}
 \item **Initialization:** \(T^* = \{N \} \) contains a single node
 \item **Growth step:** Choose a leaf node \(N \) in \(T^* \), and replace \(N \) with an internal node and two new leaf nodes
 \item **Single growth step**
 \begin{itemize}
 \item For each node \(N \), let \(P_N = \mathcal{P}(x \mid \text{satisfies } C_N) \), i.e., \(\mathcal{P} \) conditioned on \(x \) flowing to \(N \) in \(T^* \)
 \item Choose \(N \) to be the node with highest gain (according to \(P_N \)) if replaced as described below
 \item Choose an axis-aligned branch that maximizes the gain
 \item Choose labels for new leaf nodes to be the majority labels
 \end{itemize}
 \end{itemize}
\end{itemize}

\section*{Estimated Greedy Decision Tree}
\begin{itemize}
 \item **Approximation**
 \begin{itemize}
 \item Estimate gains above using \(m \) random samples \(x \sim P_N \)
 \item To sample \(x \sim P_N \), sample a component of \(P_N \), and sample a point from that component (which is a truncated Gaussian)
 \item Corresponding label is \(y = f(x) \)
 \end{itemize}
 \item **Theorem:** As \(m \rightarrow \infty \), the estimated tree converges to \(T^* \)
\end{itemize}

\section*{Example Use Cases}
\begin{itemize}
 \item **Detect use of invalid features (e.g., response as a feature)**
 \begin{itemize}
 \item We use a breast cancer dataset containing two response variables indicating recurrence. We trained a random forest where one response was incorrectly included as a feature for predicting the other. Then, we extract a decision tree.
 \item The invalid feature occurred in every extracted tree, and as the top branch in 6 of the 10 trees.
 \end{itemize}
 \item **Understand use of prejudiced features**
 \begin{itemize}
 \item We use a student grade dataset where gender is a feature. We train a random forest to predict grade with gender as a feature, and extract decision trees.
 \item Gender occurs at the fourth or fifth level in 7 of 10 trees.
 \item Using the trees, we estimate that the gender variable has a large effect on 18.3% to 39.1% of students, with an effect size ranging from 0.44 to 0.77 grade points on this subgroup.
 \end{itemize}
 \item **Comparing different models trained on the same dataset**
 \begin{itemize}
 \item We train random forests and neural nets on a wine dataset.
 \item Random forests achieved an \(F_1 \) score of at least 0.961, whereas neural nets were bimodal; 5 had \(F_1 \) score of at least 0.955, and the remaining had an \(F_1 \) score of at most 0.741.
 \item In the extracted trees, the occurrence of the feature “chlorides” was highly correlated with poor performance.
 \end{itemize}
 \item **Understanding a control policy**
 \begin{itemize}
 \item The tree extracted from the Cartpole policy says to move the cart to the left exactly when
 \begin{align*}
 \text{(pole velocity} & \leq -0.286) \lor (\text{pole angle} \leq -0.071) \\
 \end{align*}
 \item In other words, move the cart to the left when the pole is already on the left, or when the pole is moving quickly towards the left.
 \end{itemize}
\end{itemize}

\section*{Comparison to CART}
\begin{itemize}
 \item **Datasets:** 6 UCI datasets and 3 classical control problems
 \item **Blackbox models:** random forest and neural net
 \item **Tree sizes:** ranging from 16 to 64 nodes
 \item **Metric:** test set performance (\(F_1 \) score, MSE, or reward)
\end{itemize}

\section*{References}

Koh & Liang. Understanding blackbox predictions via influence functions. ICML, 2017